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Abstract— This research concerns with a quantitative statistical characterization of IC and
electronic systems in large complicated enclosures. The objective is to identify, quantify, predict
and characterize the in-situ performance of IC electronics housed inside the enclosure of interest,
such as a room, aircraft fuselage, or computer box. A novel hybrid deterministic and stochastic
formulation is proposed, in which small electronic components (circuits, packages, PCBs, etc.) in
the computational domain are modeled using first-principles and large portions (cavity enclosures)
are modeled statistically. The capability and benefits of the computation algorithms are exploited,
illustrated and validated through representative product-level IC and electronic systems.

1. INTRODUCTION

Characterizing the integrated circuit (IC) and electronics within large complicated enclosures is an
important problem with various applications [1–4]. A representative computer electronic system
is shown in Fig. 1, in which a product-level IBM package [5] is integrated on a generic printed
circuit board (PCB). The PCB, along with a monopole antenna and a mode stir, is inside a
complicated cavity. As illustrated in Fig. 1, individual sub-systems exhibit vast differences in the
aspect ratios (ratio of wavelength to feature size). Even with state-of-the-art full wave approaches,
the computational resources required for such large multi-scale problems are prohibitively expensive.
Furthermore, in high-frequency regime, electromagnetic (EM) wave solutions inside these enclosures
show strong fluctuations that are extremely sensitive to the exact geometry of the enclosure, the
location of internal electronics and the operating frequency. This phenomenon, known as wave
or quantum chaos [6], has been discussed in the context of acoustics [7], electromagnetics [8–10],
and quantum mechanics [11, 12]. In wave-chaotic systems, minor changes in the shape of the
enclosure, or the reorientation of internal IC or electronics, can result in significantly different EM
environments within the enclosure. Further, imprecise knowledge of these parameters is another
obstacle to predictability. Therefore, “numerically exact” solutions obtained by a deterministic
approach for a specific structure may be of limited practical value. It necessitates a quantitative
statistical analysis of the in-situ IC performance and system behavior.

The research objective is to identify, quantify, predict and characterize the in-situ performance
of IC electronics housed inside the enclosure of interest, such as a room, aircraft fuselage, or com-
puter box. The main challenges are due to the computational complexity for extreme multi-scale
computations accounting for mutual interactions of interconnects, packages, boards and systems,
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Figure 1: A complex electronic system from case, board to package level.
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and the engineering need for a quantitative statistical characterization of IC and electronics in com-
plex environments exhibiting wave chaos. In recent literature, non-overlapping and non-conformal
domain decomposition (DD) methods [13, 14] have been proposed to address the geometrical com-
plexity of ICs and packages. The electric and magnetic fields continuities across domain interfaces
are enforced by the second order transmission condition [14], which leads to the scalable conver-
gence of DD iterative solutions. On the other hand, a statistical approach, the so-called random
coupling model (RCM) [9, 15, 16], has been developed to describe statistical properties of EM field
in complex topologies such as circuits in boxes. The RCM enables one to predict the probability
distribution function (PDF) of electric field on electronic components inside a partially shielded
enclosure from a knowledge of wave power entering a “port” (such as a cooling vent) and the prop-
erties of the enclosure such as volume, frequency, and Q-factor. The predictions of the RCM have
been validated in a number of experiments [16, 17].

We remark that the RCM-based stochastic approach is very powerful in predicting statistical
descriptions of EM fields in simulation domains that are many wavelengths in size. On the other
hand, for the solution of electrically small domains in complex electronic systems, the assumptions
of RCM may not be valid. To address this challenge, we propose a hybrid method in which small
electronic components (circuits, packages, PCBs, etc.) are modeled using first-principles and large
portions (cavity enclosures) are modeled statistically. The primary contributions in this work
are twofold: (i) a novel stochastic Green’s function method for wave interaction with wave-chaotic
media, which quantitatively describes the universal statistical property of chaotic systems through
random matrix theory [11]; (ii) a hybrid deterministic and stochastic formulation based on an
optimized multi-trace integral equation DD framework, which leads to a seamless integration of
deterministic and stochastic solvers for the statistical characterization of in-situ IC electronics in
short-wavelength wave-chaotic enclosures.

2. FORMULATION

This section provides an overview of the proposed work. We first introduce the methodology of
domain decomposition for the hybrid formulation. A brief derivation of the stochastic Green’s
function in wave-chaotic media is presented next. Finally, the integration of deterministic and
stochastic solvers and their application to statistical analysis of the in-situ IC performance and
system behavior are discussed.

2.1. Domain Decomposition

We consider the solution of time-harmonic EM problem inside a large PEC enclosure, Ω, with its
exterior boundary ∂Ω. Two complex electronic components, defined by Ω2 and Ω3, are located
inside the domain Ω. The region exterior to Ω2 and Ω3 is denoted by Ω1, which is homogeneous
and assumed to be free space, as illustrated in Fig. 2.

Figure 2: Notations for the hybrid DD method.

The first question to be answered in this subsection is how to obtain a suitable decomposed
problem using the non-overlapping DD method. For simplicity, we consider a decomposition of
computational domain into 3 sub-regions Ω = Ω1 ∪ Ω2 ∪ Ω3, as shown in Fig. 2. The sub-region
Ω1 is modeled by boundary element (BE) solvers, and sub-regions Ω2 and Ω3 are solved by finite
element (FE) solvers. The interface between boundary element and finite element sub-regions is
denoted by Γ.

We employ the splitting idea and split the surface Γ into Γ1 the surface seen from Ω1, Γ2 the
surface seen from Ω2, and Γ3 the surface seen from Ω3. The next step is to introduce two pairs of
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trace data on each sub-region interface. These traces are the Neumann trace j1, j2, j3 and Dirichlet
trace e1, e2, e3, defined by:

jm =
1

ık0
n̂m ×

1

µrm
∇×Em; em = n̂m ×Em × n̂m (1)

The introduced local multi-trace spaces allow a modular separation of interior FE and exterior
BE sub-regions. Both FE and BE sub-regions are allowed to choose the discretization scheme,
discrete formulation and solution strategy independently. Next, a general boundary value problem
for the decomposed problem can be described as follows:

Gm (em, jm) = yincm in Ωm (2)

Bmn (em, jm) = Bmn (en,−jn) on Γm (3)

where Gm denotes the full-wave field solver for sub-region Ωm. Equation (3) denotes the TC used
to couple the Dirichlet and Neumann traces at the interfaces. Bmn usually consists of tangential
pseudo-differential operators defined at the interface Γm. For instance, when the first (1st) order
Robin-type TC [18–20] is employed, we have Bmn (e, j) := e − η̄mj. In a recent work [21–23], we
propose a second (2nd) order TC:

Bmn (e, j) := (I + κ1∇τ ×∇τ ×+κ2∇τ∇τ ·) e− (I + κ3∇τ ×∇τ ×+κ4∇τ∇τ ·) η̄j (4)

at the interface between two different materials, where ∇τ × ∇τ× and ∇τ∇τ · are 2nd order tan-
gential derivatives and τ denotes the tangential direction. κ1, κ2, κ3, and κ4 are the parameters
that can be chosen to obtain rapidly converging algorithms.

We remark that the above mentioned non-overlapping DD methods have shown to be very
effective in solving large multi-scale EM problems [23, 24]. To further improve the capability,
boundary integral equation DD method [25] and Schwarz FE DD [14] can be employed for the
solution of the BE and FE sub-regions, respectively. However, new challenges are encountered
when those method are applied to analyze electronic systems in large complicated PEC enclosures.

In high-frequency regime, EM fields inside these enclosures show strong fluctuations and are very
sensitive to system details. The study of such short-wavelength wave systems that exhibit chaotic
ray dynamics is widely known as “wave chaos”. In wave-chaotic systems, minor changes in the shape
of the enclosure, or the reorientation of internal IC or electronics, can result in significantly different
EM environments within the enclosure. Thus, deterministic solutions for a specific structure may
be of limited practical value. This necessitates a quantitative statistical analysis of the in-situ IC
performance and system behavior.

2.2. Stochastic Green’s Function

It has been recognized that, despite the apparent complexity in wave-chaotic systems, they all
possess certain universal statistical properties [15, 17]. Namely, the dynamics of the system are
governed, in a qualitative way, by the symmetry of the system and not by the details of the
interactions within the cavity. This motivates the derivation of stochastic Green’s function, in
which the statistical description depends only upon the value of a single dimensionless cavity loss-
parameter.

To illustrate, we consider the Green function G(r, r′) for the scalar wave equation, (∇2 +
k2)G(r, r′) = −δ(r − r′). The first step is to expand the Green function in terms of the complete
eigenfunctions of the system, i.e., G(r, r′) =

∑
j cjψj , where (∇2 + k2j )ψj = 0,

∫
ψi(r)ψj(r)dr = δij

and
∑

j ψj(r)ψj(r) = δ(r− r′). Two theoretical tools are critical for this study: (i) eigenfunctions
of the wave-chaotic media have statistical properties similar to those of a random superposition
of many plane waves, ψj(r) ≃

∑N
n=1 αncos(kjen · r + βn), known as the random plane wave hy-

pothesis [9]; (ii) eigenvalue spectra are statistically similar to the spectra of ensembles of random
matrices, derived from Wigner’s work on nuclear spectra [11]. Thus, we can obtain:

G(r, r′)=
∑
j

−ψj(r′)ψj(r)

k2 − k2j
≃−1

π

∑
j

∆k2ω2
j

k2 − k2j
J0(kj |r− r′|)

4
(5)

where ωj is taken to be a Gaussian random variable with zero mean and unit variance, the eigenval-
ues kj are distributed according to the random matrix hypotheses of Wigner. Moreover, we notice
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that the free space Green’s function, G0(r, r
′), can be written as:

G0(r, r
′) =

i

4
H

(1)
0 (k|r− r′|) =

i

4
J0(k|r− r′|)− P

π

∫ ∞

0

k′2dk′

k2 − k′2
J0(k

′|r− r′|)
4

(6)

Comparing (5) and (6), the sum over chaotic modes in (5) approximates on average the integral
in (6) but with a statistically fluctuating contribution coming from modes with k2 − k2j . We can
rewrite the expression of Green’s function in wave-chaotic media as:

G(r, r′) = Re[G0(r, r
′)] + iIm[G0(r, r

′)]g (7)

where g is a universal random variable that is described by random matrix theory [11]. A remarkable
aspect of Eq. (7) is that it provides a clear separation between the universal statistical behavior of
the wave-chaotic system denoted by g, and the deterministic coupling characteristics represented
by G0(r, r

′).

2.3. Statistical Analysis

In the hybrid formulation, the electrically large sub-region, Ω1, will be modeled by stochastic
Maxwell solvers, and small sub-regions containing electronic components, Ω2 and Ω3, will be solved
by deterministic Maxwell solvers. The interface between stochastic and deterministic sub-regions
is denoted by Γ. The goal is to obtain the statistical prediction of voltages, currents, and EM fields
inside electronic components of interested.

Specifically, for sub-region Ω1, we write a multi-trace boundary integral equation formula-
tion [21, 23] using the Dirichlet and Neumann traces, e1 and j1 defined on Γ1, together with the
stochastic Green’s function investigated in (7). To gain further computational efficiency, the deter-
ministic FE solver [13, 14] is employed to evaluate the numerical (discrete) Green’s function, Z−, on
the interface Γ− = Γ1 ∪ Γ2. Each column of Z− corresponds to responses of electric and magnetic
currents when excited by a unit source on the boundary surface Γ−. As a result, it represents the
discrete version of the Dirichlet-to-Neumann map in the deterministic sub-region. Once obtained,
Z− is integrated into the stochastic sub-region as exact transparent boundary conditions.

Finally, the solution of Dirichlet and Neumann traces on Γ1 as a function of random variable
g can be obtained by the Monte Carlo method or the Stochastic Collocation method with the
collocation points determined by Clenshaw-Curtis nested quadrature rules [26]. To speed up the
computation, we utilize the hierarchical interpolative decomposition [27, 28] to compress the dense
BE matrix, and to speed up the coupling between stochastic sub-region boundaries. Once the
statistical characterization of Dirichlet and Neumann traces is available, a backward postprocessing
is employed to obtain the statistical prediction of EM fields inside Ω2 and Ω3.

3. NUMERICAL RESULTS

3.1. Deterministic Solution at Low-Mid Frequency

We consider a validation example by simulating two monopole antennas mounted inside a closed
surface PEC cavity at 800 MHz–900 MHz. The computational domain is decomposed into three
regions: 1) interior cavity region; 2) long monopole; and 3) short monopole, as shown in Fig. 3.
The geometry of each monopole is also illustrated. After decomposition, the multi-trace boundary
integral equation method [23] is used to discretize the cavity sub-domain Ω1, and the finite element
method is employed to discretize the antenna sub-domains Ω2 and Ω3. In the simulation, we excite
the short monopole and use the long monopole as the receiving antenna. The computed S11 and
S12 with respect to different operating frequencies are shown in Fig. 4. The measurement results
conducted in Applied EM Group at University of New Mexico (UNM) are also given in Fig. 4. We
observe a very good agreement between the results obtained by computation and measurement. We
also notice that the computational results of S11 are slightly bigger than the measurement results.
It might be due to the small loss introduced by those tiny slots on the edges and corners of cavity
from imperfect fabrication.

3.2. Statistical Analysis at High Frequency

We proceed to study the case at a much higher frequency, 10 GHz. A X-band waveguide adapter
is used to launch the EM fields within the cavity. At this frequency, the cavity is significantly
overmoded and EM fields exhibit wave chaotic fluctuations.

To apply the proposed method, we first study the universal fluctuating quantity g in the s-
tochastic Green’s function. According to the RCM and random matrix theory, the only parameter
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Figure 3: Configuration of the validation example and geometry of the antennas.

Figure 4: Comparison of S-parameters obtained by computation and measurement.
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Figure 5: PDF of the universal random variable g.

that determines the statistics of g is the dimensionless cavity loss-parameter α = k2

∆k2
nQ

, where ∆k2n
is the mean-spacing of the adjacent eigenvalues of the Helmholtz operator predicted by Weyl For-
mula [6] and Q represents the loaded quality-factor of the cavity. Shown in Fig. 5 is the probability
distribution function (PDF) of real and imaginary part of g obtained by computational predictions
and measurement results.

Next, we apply the proposed hybrid formulation to analyze the PDF of S11 of the waveguide
launching adapter in a frequency range 10 GHz–10.1 GHz. In the experimental setup, 1601 frequen-
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cy sample points are chosen. At each frequency point, the internal mode stirrer is rotated through
200 positions over 360 degrees. The resulting S11 and its ensemble average are shown in Fig. 6.
Finally, the PDF of S11 obtained by experimental results and computational prediction using the
proposed method are given in Fig. 7. We observe a very good agreement in the patterns of PDF
plots. There is a slight left shift in experimental results due to the small loss in the cavity we
discussed earlier.

Figure 6: Experimental results of S11 for a sequence of mode stirrer locations and their ensemble average
(curve in blue color).
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Figure 7: PDF of the S11 obtained by measurement data and computational prediction.

4. CONCLUSION

The proposed work aims to answer a fundamental challenge in the quantitative statistical modeling
of IC and electronics in large complex enclosure. A new stochastic dyadic Green’s function method
is introduced for wave interaction with wave-chaotic media, which quantitatively describes universal
statistical properties of chaotic systems through random matrix theory. It also leads to a seamless
integration of deterministic and stochastic formulation for the statistical characterization of in-situ
IC electronics in short-wavelength wave-chaotic enclosures.
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